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Abstract. Using the projector quantum Monte Carlo method, we investigate the magnetic
properties of the half-filled two-dimensionalU–t–t ′ model on a square lattice. In partic-
ular, we describe the transition between the usual antiferromagnetic order and a new,
antiferromagnetically layered type of order as a function of the diagonal hopping amplitudet ′.
In the case of strong correlationsU , our results compare favourably to analytical and numerical
results on theJ1–J2 model. Furthermore, we investigate the magnetic ground-state properties for
medium correlation strength, too. In this regime, as well as in the strongly correlated case, the
system undergoes a transition from antiferromagnetic order to layered antiferromagnetic order
at t ′ 2 ≈ 0.5t2.

1. Introduction

The discovery of high-temperature superconductivity [1] has renewed interest in strongly
correlated electronic systems. As a simple model for the copper oxide planes, the Hubbard
model [2] with nearest-neighbour hopping is often investigated. To reproduce x-ray
absorption spectra [3] and magnetic neutron scattering data [4] as well as the Fermi surface
of the cuprates, it was proposed to introduce in addition to the nearest-neighbour hopping a
diagonal hopping, whose amplitudet ′ is material dependent. The addition of the diagonal
hopping term also has the advantage of distinguishing hole-doped from electron-doped
systems, since it destroys the particle–hole symmetry of the original model.

One possible good, numerical method for studying the properties of strongly correlated
systems is the quantum Monte Carlo method. Several electronic and magnetic properties of
the 2D Hubbard and 2DU–t–t ′ model on the square lattice have been calculated using the
grand canonical quantum Monte Carlo algorithm [5–10]. Some important results of these
studies are as follows.

(i) At half-filling the bare Hubbard model has long-range antiferromagnetic order for all
values of the on-site repulsion withU > 0. If the system is doped, the antiferromagnetic
order is destroyed for allU > 0 [5, 7–9].

(ii) At half-filling the U–t–t ′ model develops long-range antiferromagnetic order upon
reaching a critical on-site repulsionUc, which depends on the diagonal hoppingt ′ [6]. If
the system is doped, the antiferromagnetic order decreases until incommensurable features
appear in the structure factor [6, 10]. Recently, numerical data were reported which suggest
the existence of an antiferromagnetic metallic ground state for theU–t–t ′ model [11].

In the limit of largeU and at half-filling, theU–t–t ′ model maps onto the Heisenberg
antiferromagnet with nearest-neighbour and next-nearest-neighbour spin exchange, the so-
called J1–J2 model. This model, too, has often been investigated in connection with
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properties of the high-temperature superconducting materials, using a variety of numerical
[12–15] and analytical [16] methods. The numerical results were obtained by exact
diagonalization of systems ofN = 16–20 lattice sites [12, 13, 15] up toN = 6× 6 sites
[14]. All of these numerical investigations agree that the system shows a transition from
antiferromagnetic to layered antiferromagnetic order, but due to strong finite-size effects
it is not clear of what kind the intermediate phase is. Recently, theJ1–J2 model was
investigated [16] in the framework of the cumulant approach [17] giving good agreement
with numerical results from exact diagonalization [12, 15].

In this paper, we calculate the staggered and layered magnetizations of theU–t–t ′

model for several values of the on-site repulsionU using the projector quantum Monte
Carlo method [18]. The convergence of this method depends strongly on the initial trial
state used. Therefore we have used the spin-density-wave (SDW) ground state [19, 20] as
a trial wave function, which, in the case of the bare Hubbard model at half-filling, has the
advantage of avoiding the so-called ‘minus-sign’ problem. In contrast to other SDW mean-
field approaches for theU–t–t ′ model [10], the SDW mean-field solution that we construct
here has two variational parameters, namely the staggered and the layered magnetizations
mQ andmX.

In previous work by Duffy and Moreo [10, 11], theU–t–t ′ model was investigated in a
parameter region of smallt ′ for which the model displays only antiferromagnetic ordering.
The case of smallt ′ is believed to be relevant for the high-Tc cuprate superconductors.
Furthermore, the antiferromagnetic ordering is why the authors of references [10, 11] restrict
their SDW mean-field approximation to the antiferromagnetic solution in the case of half-
filling. In contrast, we focus in our work on the transition from antiferromagnetic to
layered antiferromagnetic order on varyingt ′ at fixed correlation strengthU , thus allowing
for unphysically large values oft ′. Hence, when constructing a SDW mean-field solution,
we include both types of ordering. Our mean-field solution is solely used as a starting point
for the quantum Monte Carlo algorithm.

2. The projector quantum Monte Carlo algorithm

Here we briefly review the projector quantum Monte Carlo (PQMC) method for fermions
in the ground state. For a detailed discussion, the reader is referred to reference [18].

The key idea of the PQMC algorithm is to project out the ground-state wave function
|90〉 of a lattice fermion HamiltonianH from a given trial wave function|8T 〉 by applying
the operator exp(−βH) to |8T 〉 according to

lim
β→∞

e−βH |8T 〉√
〈8T |e−2βH |8T 〉

= |90〉 〈90|8T 〉
|〈90|8T 〉| . (1)

The expectation values of the physical quantitiesA are then obtained from

〈A〉 = lim
β→∞

〈8T |e−βHAe−βH |8T 〉
〈8T |e−2βH |8T 〉 . (2)

We consider the two-dimensional Hubbard model on a square lattice where the
HamiltonianH is given by

H =
∑
ij,σ

tij c
†
iσ cjσ +

U

2

∑
i,σ

niσ ni−σ = K + V (3)
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and tij denotes nearest-neighbour hopping. In the case of theU–t–t ′ model the hopping
amplitude takes the values

tij =


−t if i, j are nearest neighbours

−t ′ if i, j are next-nearest neighbours

0 otherwise.

Applying the Trotter–Suzuki decomposition [21, 22] and the discrete Hubbard–Stratonovich
transformation [23] to the projection operator, the effect of the projection operator on the
trial state can be symbolically rewritten as a sum over the Hubbard–Stratonovich spinsS:

e−βH |8T 〉 =
∑
{S}
F(S)|8T 〉.

The expectation value of the physical quantity is then obtained from

〈A〉 =
( ∑
{S,S′}
〈8T |F(S)AF(S′)|8T 〉

)/( ∑
{S,S′}
〈8T |F(S)F (S′)|8T 〉

)
. (4)

To evaluate these sums, the Monte Carlo method is used [24], utilizing|ω(S,S′)| =
|〈8T |F(S)F (S′)|8T 〉| as the probability of flipping spins. Since in generalω(S,S′) can
be negative for some spin configurationsS, it can be difficult to evaluate equation (4)
numerically. This problem is often referred to as the ‘minus-sign’ problem.
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Figure 1. Layered antiferromagnetic order on a square lattice.

3. The spin-density-wave approach for theU–t–t′ model

All quantum Monte Carlo simulations suffer from the so-called ‘minus-sign’ problem though
it does not always occur at half-filling. In the PQMC scheme, the ‘minus-sign’ problem
can be avoided for the bare Hubbard model at half-filling if one uses a SDW ground state
as the trial wave function. In our simulations, we found that an appropriately chosen
SDW ground-state wave function reduces the ‘minus-sign’ problem in the case of theU–
t–t ′ model, too. In the usual SDW mean-field approach for theU–t–t ′ model, only the
staggered magnetizationmQ of ‘normal’ antiferromagnetic order is taken into account as a
variational parameter [10]. In this work we develop a SDW mean-field approach with two
variational parameters, the first being the staggered magnetizationmQ and the second being
the layered magnetizationmX. HeremX is the order parameter for layered antiferromagnetic
order. Consider the two sublattices of a chequerboard. If the spins on each sublattice
separately are ordered antiferromagnetically, one speaks oflayered antiferromagneticorder
(see figure 1). Spins are then pointing row-wise or column-wise up and down in thez-
direction.
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We want to present the formal aspects of our SDW approach only briefly. Our starting
point is the approximation of the full Hamiltonian (3) in terms of a self-consistent-field
HamiltonianHSCF :

HSCF =
∑
ij,σ

tij c
†
iσ cjσ + U

∑
i,σ

〈niσ 〉ni,−σ + E0 (5)

whereE0 = −U
∑

i〈ni↑〉〈ni↓〉 is a constant energy shift. In contrast to the usualansatzfor
〈niσ 〉 in the SDW approach, we include not only the staggered magnetizationmQ but also
the layered magnetizationmX. Assuming a half-filled square lattice, we write

〈niσ 〉 = 1

2
(1+ σmQe−iQ·Ri + σmXe−iX·Ri ) (6)

whereQ = (π, π) is the antiferromagnetic vector andX = (π, 0) is the layered anti-
ferromagnetic vector ink-space. Inserting thisansatzinto HSCF , we obtain ink-space

HSDW =
∑
k,σ

′′
c
†
kσHckσ + E0 (7)

wherec†kσ = (c†kσ , c†k+Qσ , c†k+Xσ , c†k+Y σ ) and

H =


e1+ e2+ e3+ Ũ σmQŨ σmXŨ 0

σmQŨ −e1− e2+ e3+ Ũ 0 σmXŨ

σmXŨ 0 −e1+ e2− e3+ Ũ σmQŨ

0 σmXŨ σmQŨ e1− e2− e3+ Ũ


(8)

with e1 = −2t coskx , e2 = −2t cosky , e3 = −4t ′ coskx cosky , Ũ = U/2 andY = (0, π).
Note that the sum in equation (7) runs over the bisected magnetic Brillouin zone, i.e. over
one quarter of the full Brillouin zone (see figure 2).
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Figure 2. The full Brillouin zone (dashed line), magnetic Brillouin zone (solid line) and Brillouin
zone reduced by AF and layered AF order (dotted line) for a square lattice.
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Figure 3. The ground-state energy per site of theU–t–t ′ model on a square lattice forU = 8t .
The error bars are of the order of twice the symbol size. Lines are purely guides to the eye.

The parametersmQ andmX are determined by iteration from the coupled pair of self-
consistent equations

mQ = 1

N

∑
i

e−iQ·Ri 〈ni↑ − ni↓〉

mX = 1

N

∑
i

e−iX·Ri 〈ni↑ − ni↓〉
(9)

where 〈ni↑〉 and 〈ni↓〉 are themselves functions ofmQ andmX. The iteration procedure
may lead to several fixed points, of which the one of lowest energy is chosen. Finally these
values are used for the diagonalization of Hamiltonian (7) to construct the SDW ground
state which serves as the trial-state wave function in the projection algorithm.

4. Numerical results

Using the PQMC scheme, we compute the expectation values ofH andniσ for theU–t–t ′

model. On average, we use 64 000 Monte Carlo sweeps per run for one set of parameters.
The ‘minus-sign’ problem, on account of which statistical averages become poor, is in
general not serious for valuest ′ > 0, except for the region 0.4 6 t ′ 2/t2 6 0.8. To
ensure proper convergence of the algorithm, we have computed the expectation values for
different values ofβ. Typically, the expectation values become independent ofβ at around
β = (5 . . .10)t−1. The number of Trotter slices is chosen to be 512, large enough that the
error in our results due to the Trotter decomposition is smaller than the statistical error.
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Figure 4. The staggered and layered magnetizationsmQ andmX of the U–t–t ′ model on a
square lattice forU = 8t . While the staggered magnetizationmQ vanishes for larget ′, the
system will instead show layered Néel ordermX . On our scale, the classical Néel state takes
the value of 1. Lines are purely guides to the eye.

In the following, we will discuss the ground-state energy and the staggered and layered
magnetizations which were computed according to equation (9), for large and medium values
of the correlation strengthU as a function oft ′ 2/t2. In the limit of large correlations and at
half-filling, theU–t–t ′ model becomes theJ1–J2 model withJ1 ∼ t2/U andJ2 ∼ t ′ 2/U .
We therefore chose to express our data in terms oft ′ 2/t2.

In figure 3 the ground-state energies of systems of linear sizesL = 4, 6, and 8 are
plotted for strong correlationsU = 8t . At t ′ = 0 we recover the bare Hubbard model
with nearest-neighbour hopping, and theJ1–J2 model will map onto the Heisenberg anti-
ferromagnet. Our value for the energy att ′ = 0 is in agreement with the data from previous
QMC simulations made on the basis of the Hubbard model [5]. If the next-nearest-neighbour
hopping is turned on, the system becomes frustrated as the magnetic disorder of the anti-
ferromagnetically ordered system increases. Accordingly, the ground-state energy of the
system will slightly increase. We observe that fort ′ 2 ≈ 0.5t2 the ground state reaches its
maximum value, showing that for this value oft ′ the system has its maximum frustration.
This can be understood in terms of the classical version of theJ1–J2 model where the
ground state changes from the Néel state to a layered Néel state at exactlyJ2 = 0.5J1.

If t ′ 2 > 0.5t2, then the next-nearest-neighbour hopping dominates over the nearest-
neighbour hopping, decreasing the frustration and the energy of the system again. The
behaviour of the energy corresponds to that of analytical results [16] as well as numerical
results from exact-diagonalization studies [12] of theJ1–J2 model. It should be mentioned
that there are finite-size effects in our simulations, but they are small.
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Figure 5. The ground-state energy per site of theU–t–t ′ model on a square lattice forU = 4t .
The same error bars apply as in figure 3.

Let us now turn to the magnetic properties. In our simulation we compute the spin–spin
correlation function

S(q) = 1

N

∑
i,j

eiq·(Ri−Rj )〈(ni↑ − ni↓)(nj↑ − nj↓)〉. (10)

In order to extrapolate to the thermodynamic limit, we plotS(q)/N versus 1/N for linear
system sizesL = 4, 6, and 8 [25, 5, 7]. It should follow a straight line according to

S(q) = Nm2
q + Sc(q) (11)

whereSc is the connected structure factor andmq the magnetization:

mq = 1

N

∑
i

e−iq·Ri 〈ni↑ − ni↓〉. (12)

From the extrapolated value forN → ∞, we obtain the square of the magnetizationmq .
We have followed this procedure forq = Q andq =X to obtain the staggered and layered
magnetizations, respectively.

In figure 4 we depict the staggered and layered magnetizationsmQ and mX for
U = 8t as a function oft ′ 2/t2. At t ′ = 0, the system clearly demonstrates Néel order
since the staggered magnetization takes on a finite value while the layered magnetization
vanishes. If we increase the diagonal hopping amplitudet ′, the antiferromagnetic order
of the system slowly decreases and a layered antiferromagnetic order develops, starting at
aroundt ′ 2 ≈ 0.5t2. At t ′ 2 ≈ 0.5t2 the two types of magnetic order could coexist. Above
t ′ 2 ≈ 0.6t2 the antiferromagnetic order is destroyed and the layered antiferromagnetic order
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Figure 6. The staggered and layered magnetizationsmQ andmX for U = 4t . See the description
in the caption of figure 4.

dominates. The behaviour that we observe is in good agreement with a recent analysis [16]
of the J1–J2 model. In the region where the transition between the two types of magnetic
order occurs, the sign problem becomes serious, making it difficult to reach large enoughβ.
Our data are not sufficiently accurate to allow us to specify the type of transition, i.e. whether
it is a first- or second-order phase transition or a crossover between the two magnetic regimes
[14]. Furthermore, the hypothesis of Dagotto and Moreo [12] of a spin-liquid phase around
the critical point≈0.5J1 in the J1–J2 model cannot be investigated.

The regions of intermediate correlation strengthU are of much current interest [10, 11]
since this parameter regime is believed to apply to the copper oxide planes. We therefore
extended our calculations down toU = 4t . In figure 5 we have plotted the ground-state
energy as a function oft ′ 2/t2. In general, the behaviour is the same as forU = 8t : after a
slight increase ofEg up to t ′ 2 = 0.2t2, Eg decreases even more quickly than forU = 8t .
Note that the maximum of the ground-state energy occurs in the ranget ′ 2 ≈ (0.2 . . .0.4)t2,
indicating that the critical region is shifted to smaller values oft ′ 2/t2. We observe that for
L = 8 the ground-state energy is considerably higher than forL = 4 and 6 att ′ 2 = 0.4t2

and 0.6t2. In this regime the system is highly frustrated and therefore the number of low-
lying energy states increases. This number depends on the linear system size and makes it
necessary, for large systems sizes, to use large projection parametersβ, which are, however,
not accessible due to the sign problem.

The different magnetization order parameters forU = 4t are depicted in figure 6. The
behaviour is, in general, similar to that forU = 8t , showing a transition between Néel
and the layered Ńeel type of order att ′ 2 ≈ 0.5t2. We observe that the magnitudes of the
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staggered and the layered magnetizations are smaller than their counterparts forU = 8t ,
because the correlation strength is reduced.

5. Summary

To conclude, we have investigated theU–t–t ′ model using the projector quantum Monte
Carlo method at strong and medium correlations. We introduced a SDW mean-field approx-
imation with variational parametersmQ andmX. This was used to construct a trial state
for the PQMC method in order to reduce the severity of the ‘minus-sign’ problem and to
compute the staggered and layered magnetizationsmQ andmX.

For the case of strong correlations, the system undergoes a transition from an
antiferromagnetically ordered state to a layered antiferromagnetically ordered state as a
function of t ′ 2/t2. Extending the simulations to medium correlations, the same behaviour
is observed, but showing a smaller magnitude of the magnetizations. Our results for the
strongly correlated case agree well with analytical and numerical results for theJ1–J2 model.
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